## Lake Volume determination with SWOT

J-F Cretaux, Q. Lagrelle, L. Fruteau, C. Pottier

SWOT will product water height and water contours as shapefile on cycle and pass based time interval

Final product will be water storage change at same time interval

Computation of the volume of a lake is only possible using bathymetry but:
SWOT will not produce bathymetry
Bathymetry exist only on a very little number of lakes

$$
\sqrt{v}
$$

Only storage change will be available and approximation must be done

$$
』
$$

We need to simulate first the validity of the calculation
We need to implement the algorithm to make the calculation

## Volume calculation with SWOT products (H, B)

-We consider that we have the final H \& B SWOT product
-We assume that the volume change can be approximate to the volume difference of two pyramides

$$
\text { Volume }=\frac{h}{3} \cdot(B 1+B 2+\sqrt{B 1 \cdot B 2})
$$

】
With SWOT


$$
\Delta V\left(\frac{t_{i}}{t_{0}}\right)=\Delta V\left(\frac{t_{i-1}}{t_{0}}\right)+\frac{\left[\left(H\left(t_{i}\right)-H\left(t_{i-1}\right)\right] *\left[B\left(t_{i}\right)+B\left(t_{i-1}\right)+\sqrt{B\left(t_{i}\right) * B\left(t_{i-1}\right)}\right]\right.}{3}
$$

## Creation of a simulator to determine the error budget

## First step

a Simple case of a paraboloid

## Voluone $=\pi \cdot h^{2} \cdot p$

- Volume is calculated by the difference between two paraboloids
- Height difference varies from small values to large values in order to estimate the sensitivity of volume errors to the dynamic of shrinkage or flooding of a lake between two SWOT cycles

Second steps => generate more complex theorical lake bed

Third steps => upload real bathymetry in the simulator and fill the lake at different height intervals

Fourth steps => build hypsometry and usefull bathymetry with a set of $\sim 50$ vectors:H,B, contours

## Results of the simulation (1/2)



## Results of the simulation (2/2)



## Second step: create more complex theorical bathymetry in the simulator (1/2)

A, B,C: A priori LDB
1,2,3: SWOT obs
A priori data base $\& \mathrm{t}_{0}$ (from SWOT observation)

## Complex multi lakes case

$\mathrm{t}_{2}$ (from SWOT observation)


The A priori Lake database must be update each year: $\quad A, B, C=>1$


Second step: create more complex theorical bathymetry in the simulator (2/2)

## Complex multi lakes case

$\mathrm{t}_{0}$ (from a Priori data base)
$\mathrm{t}_{1}$ (from SWOT observation)
$\mathrm{t}_{2}$ (from SWOT observation)


$$
\begin{aligned}
& \Delta V_{A}\left(\frac{t_{1}}{t_{0}}\right)=\Delta V_{A 1}\left(\frac{t_{1}}{t_{0}}\right)+\Delta V_{A 2}\left(\frac{t_{1}}{t_{0}}\right) \\
& \Delta V_{A}\left(\frac{t_{2}}{t_{0}}\right)=\Delta V_{A}\left(\frac{t_{1}}{t_{0}}\right)+\Delta V_{A 1}\left(\frac{t_{1}}{t_{1}}\right)+\Delta V_{A 2}\left(\frac{t_{2}}{t_{1}}\right)+\Delta V_{A 3}\left(\frac{t_{2}}{t_{1}}\right)
\end{aligned}
$$

$$
\Delta V_{A}\left(\frac{t_{i}}{t_{0}}\right)=\Delta V_{A}\left(\frac{t_{i-1}}{t_{0}}\right)+\sum_{j}\left(\Delta V_{A j}\left(\frac{t_{i-1}}{t_{i}}\right)\right)
$$ COLLEGE OF

ARTS $\&$ SCIENCES

Third steps => upload real bathymetry in the simulator and fill the lake at different height intervals

Example of a shrinkage followed by separation into several small lakes


Fourth step: => build hypsometry and usefull bathymetry with a set of $\sim 50$ vectors: $\mathrm{H}, \mathrm{B}$, contours \& recompute the volume using bathymetry



4


## Lake products the full chain and associated algorithms (1/2)

## HR simulator

Generation of the multi-temporal interferogram and generate height \& pixel cloud


## LakeObs

- Identify all separate entities in the water mask = label connected regions in 2D pixel cloud in radar geometry
- Retrieve pixels corresponding to lakes and new objects entirely inside the tile
-Refine pixels geolocation
F3
-Compute lake product
F4
-Link to the a priori database (intersection of polygons)


## Lake products the full chain and associated algorithms (2/2)

3 SimVol / CalVol Use lake products, H \& B \& shapefiles released from LakeObs



Winter/dry Season


Spring/summer wet Season


Reconstruct «useful » bathymetry

Recompute lake volume changes for the whole mission
 lifetime

